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We study five dimensional spherical collapse of a inhomogeneous dust in presence of a positive
cosmological constant. The general interior solutions, in the closed form, of the Einstein field
equations, i.e., the 5D Tolman-Bondi-de Sitter, is obtained which in turn is matched to exterior 5D
Scwarschild-de Sitter. It turns out that the collapse proceed in the same way as in the Minkowski
background, i.e., the strong curvature naked singularities form and thus violate the cosmic censorship
conjecture. A brief discussion on the causal structure singularities and horizons is also given.
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I. INTRODUCTION

The cosmological constant, conventionally denoted by
the Greek letter Λ, is a parameter describing the energy
density of the vacuum (empty space), and a potentially
important contributor to the dynamical history of the
universe. The original role of a non-zero Λ was to al-
low static homogeneous solutions to Einstein’s equations
in the presence of matter, turned out to be unnecessary
when the expansion of the universe was discovered [1],
and there have been a number of subsequent episodes
in which a nonzero Λ was put forward as an explana-
tion for a set of observations and later withdrawn when
the observational case evaporated. But a non-zero Λ is
still of interest, as observations made in the late 1990’s
of distance-redshift relations indicate that the universe is
accelerating [2–4]. These observations can be explained
very well by assuming a very small Λ > 0 in Einstein’s
equations. There are other possible causes of an acceler-
ating universe, such as quintessence, but the cosmological
constant is in most respects the most economical solution.
If a Λ term must be restored to the Einstein equations,
surprises may turn up in other physical applications of
Einstein’s equations as well. For example, Markovic and
Shapiro [5] generalized the Oppenheimer-Snyder model
(which describes the gravitational collapse of a spherical
homogeneous dust ball initially at rest in exterior vac-
uum to a Schwarzschild black hole) taking into account
the presence of a Λ > 0. They showed that Λ may af-
fect the onset of collapse and decelerate the implosion
initially. It was recently seen, by works of Susskind and
others [6], a Λ > 0 has surprising consequences, such as a
finite maximum entropy of the observable universe. The
Markovic and Shapiro’s [5] model was qualitatively gen-
eralized to the inhomogeneous and degenerate case by
Cissoko et al. [7] and Lake [8, 9].
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To understand the general collapse problem as well
as nature of singularities, one would like to analyze ex-
act solutions, preferably in close form, of Einstein equa-
tions. However the non-linearity of field equations makes
them difficult, even in spherical symmetry. A model in
which analytical treatment appears feasible is that of
5D Tolman-Model that describes gravitational collapse of
spherically symmetric inhomogeneous dust in a 5D space-
time, since in this case the general exact solutions, for
both marginally bound (W (r) = 1) and non-marginally
bound (W (r) 6= 1), are possible. This is unlike the
4D case, where the corresponding solution is available
in parametric form only. Hence, we shall restrict our-
selves to the 5D spherically symmetric inhomogeneous
dust collapse. Further, the 5D space-time is particularly
more relevant because both 10D and 11D supergravity
theories yield solutions where a 5D space-time results af-
ter dimensional reduction [10].

The aim of the paper is to extend the previous studies
on the gravitational collapse of inhomogeneous dust in
the presence of a Λ > 0 in the 5D space-time. First
we derive general solutions, in closed form, for both
marginally bound (W (r) = 1) and non-marginally bound
(W (r) 6= 1) with Λ > 0. This is 5D analogous of 4D
Tolman-Bondi-de Sitter solutions and for definiteness we
shall call it 5D Tolman-Bondi-de Sitter solutions. This
would be discussed in section II. We find that gravita-
tional collapse of a 5D Tolman-Bondi-de Sitter spacetime
gives rise to a naked shell-focusing singularity, providing
an explicit counter-example to the cosmic censorship con-
jecture (CCC) [11]. This is is the subject of the section V
which will be followed by a discussion. We discuss Dar-
mois junction conditions between static and non-static
space-times in section III. A brief discussion on apparent
horizons formation 5D Tolman-Bondi-de Sitter solutions
is presented in section IV.

We have used units which fix the speed of light and
the gravitational constant via 8πG = c4 = 1.
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II. 5D TOLMAN-BONDI-DE SITTER
SOLUTIONS

The standard 4D Tolman-Bondi solution [12] repre-
sents an interior of a collapsing inhomogeneous dust
sphere. The solution we seek is - collapse of a spheri-
cal dust with positive Λ. The metric for the 5D case,
in comoving coordinates coordinates, assumes the form
[13–15]:

ds2 = −dt2 +X(t, r)2dr2 +R(t, r)2dΩ2, (1)

where

dΩ2 = dθ2 + sin(θ)2dφ2 + sin(θ)2 sin(φ)2dψ2, (2)

together with the stress-energy tensor for dust:

Tab = ζ(t, r)δt
aδ

t
b, (3)

where ua = δa
t is the 5-dimensional velocity. The coordi-

nate r is the co-moving radial coordinate, t is the proper
time of freely falling shells, R is a function of t and r
with R > 0 and X is also a function of t and r. With the
metric (1), the Einstein equations are

G0
0 =

3
X2

(
R′′

R
− X ′R′

XR
+
R′2

R2

)
−3

(
Ṙ2

R2
+
ẊṘ

XR

)
− 3
R2

= ζ − Λ, (4)

G1
1 =

3R′2

X2R2
− 3

(
R̈

R
+
Ṙ2

R2

)
− 3
R2

= −Λ, (5)

G2
2 = G3

3 = G4
4 =

2
X2

(
R′′

R
− X ′R′

XR
− R′2

2R2

)
−2

(
R̈

R
+
ẊṘ

XR
+

Ṙ2

2R2
+

Ẍ

2X

)
− 1
R2

= −Λ,(6)

G0
1 = 3

Ṙ′

R
− 3

ẊR′

XR
= 0, (7)

where an over-dot and prime denote the partial deriva-
tive with respect to t and r, respectively. Integration of
Eq. (7) gives

X =
Y ′

W
, (8)

where W = W (r) is an arbitrary function of r. From
Eq. (5) and (8), we obtain

R̈

R
+
Ṙ2

R2
+

1−W 2

R2
− Λ

3
= 0, (9)

which can be easily integrated to yield

Ṙ2 = W 2 − 1 +
M
R2

+ Λ
R2

6
. (10)

Where M = M(r) is an arbitrary function of r and re-
ferred to as mass function. Since in the present discussion
we are concerned with gravitational collapse, we require
that Ṙ(t, r) < 0. Substituting Eqs. (8) and (10) into
Eq. (5) we obtain

M′ =
2
3
κζR3R′. (11)

Integrating Eq. (11) leads to

M(r) =
2
3
κ

∫
ζR3dR, (12)

where constant of integration is taken as zero since we
want a finite distribution of matter at the origin r = 0.
The functionMmust be positive, becauseM < 0 implies
the existence of negative mass. This can be seen from the
mass function m(t, r), which is given by

m(t, r) = R2
(
1− gabR,aR,b

)
= R2

(
1− R′

2

X2
+ Ṙ2

)
. (13)

Using Eqs. (8) and (10) into Eq. (13) we get

m(t, r) =M(r) +
Λ
6
R4(r, t). (14)

The quantity M(r) can be interpreted as energy due to
the energy density ζ(t, r) given by Eq. (12), and since it
is measured in a comoving frame,M is only r dependent.

a. Marginally bound case (W (r) = 1) Equa-
tion (10) has three types of solutions, namely, hyperbolic,
parabolic and elliptic solutions depending on whether
W (r) > 0, W (r) = 0 or W (r) < 0 respectively. We
consider the case Λ > 0 and without loss of generality we
consider here W (r) = 1 case. The condition W (r) = 1
and Λ = 0 is the marginally bound condition, limiting
the situations where the shell is bounded from those it is
unbounded. In the presence of a cosmological constant,
the situation is more complex, and W (r) = 1 leads to an
unbounded shell. Then with the condition W (r) = 1 we
obtain from Eqs. (8) and (10),

R(t, r) =
(

6M
Λ

)1/4

sinh1/2 α,

R′(t, r) =
(

6M
Λ

)1/4 [M′

4M
sinhα

+

√
Λ
6
t′0 coshα

]
sinh−1/2 α, (15)

where α = α(t, r) is given by

α(t, r) =

√
2Λ
3

[t0(r)− t] (16)
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and t0(r) is an arbitrary function of r. For t = t0(r) we
have R(t, r) = 0 which is the time when the matter shell
r = constant hits the physical singularity. The three arbi-
trary functionsM(r), W (r) and t0(r) completely specify
the behavior of shell of radius r. It is possible to make an
arbitrary relabelling of spherical dust shells by r → g(r),
without loss of generality, we fix the labelling by requir-
ing that, on the hypersurface t = 0, r coincides with the
radius R(0, r) = r. This corresponds to the following
choice of t0(r):

t0(r) =

√
3

2Λ
sinh−1

[√
Λ

6M
r2

]
. (17)

The central singularity occurs at r = 0, the correspond-
ing time being t = t0(0) = 0. We denote by ρ(r) the
initial density

ρ(r) = ζ(0, r) =
M′

r2
→M(r) =

∫
ρ(r)r2dr. (18)

It is easy to see that as Λ→ 0 the above solution reduces
to the 5D Tolman-Bondi solutions.

lim
Λ→0

R(t, r) =
[√

4M(t0 − t)
]1/2

,

lim
Λ→0

R′(t, r) =
M′(t0 − t) + 4Mt′0

[4M3(t0 − t)2]1/4
. (19)

b. Non-marginally bound case (W (r) 6= 1) The case
W (r) 6= 1 is interesting in the sense that in the analogous
4D case the solutions can’t be obtain in closed form. In-
tegration Eq. (10) shows that the evolution of the dust
shell in the case W (r) 6= 1 is given by

R(t, r) =

[(
6M
Λ
− 9(W 2 − 1)2

Λ2

)1/2

sinhα− 3(W 2 − 1)2

Λ

]1/2

(20)

where again the α = α(t, r) is given by Eq. (16). For
W (r) = 1, the marginally bound solutions Eq. (15)are
recovered.

III. JUNCTION CONDITIONS

In order to study the gravitational collapse of a fi-
nite spherical body we have to match the solution along
the time like surface at some R = RΣ to a suitable 5D
exterior. We consider a spherical surface with its mo-
tion described by a time-like 4-surface Σ, which divides
space-times into interior and exterior manifolds VI and
VE Since the fluid is not radiating the exterior space-
time to the Σ can be taken as 5D Schwarzschild-de Sitter
space-time:

ds2 = −χ(r)dT 2 +
1

χ(r)
dr2 + r2dΩ2, (21)

where

dΩ2 = dθ2 + sin(θ)2dφ2 + sin(θ)2 sin(φ)2dψ2,

and

χ(r) = 1− 2M
r
− Λ

3
r2.

In accordance with Darmois junction condition [7], we
have to demand when approaching Σ in VI and VE

(ds2−)Σ = (ds2+)Σ = (ds2)Σ, (22)

where the subscript Σ means that the quantities are to
be evaluated on Σ and let K±

ij is extrinsic curvature to
Σ, defined by

K±
ij = −n±α

∂2χα
±

∂ξi∂ξj
− n±α Γα

βγ

∂χβ
±

∂ξi

∂χγ
±

∂ξj
, (23)

and where Γα
βγ are Christoffel symbols, n±α the unit nor-

mal vectors to Σ, χα are the coordinates of the inte-
rior and exterior space-time and ξi are the coordinates
that defines Σ. The intrinsic metric on the hypersurface
r = rΣ is given by

ds2 = −dt2 +R2(rΣ, t)dΩ2, (24)

with coordinates ξa = (t, θ, φ, ψ). In this coordinate the
surface Σ, being the boundary of the matter distribution,
will have the equation

r − rΣ = 0, (25)

where rΣ is a constant. The first fundamental form of Σ
can be written as gijdξ

idξj . Then the exterior metric, on
Σ, becomes:

ds2Σ = −

[
χ(rΣ)− 1

χ(rΣ)

(
drΣ

dT

)2
]
dT 2 + r2

ΣdΩ
2, (26)

where we assume that the coefficient of dT 2 > 0 so that T
is time like coordinate. From the first junction condition
we obtain

rΣ = R(rΣ, t), (27)

[
χ(rΣ)− 1

χ(rΣ)

(
drΣ

dT

)2
]1/2

dT = dt. (28)

The non-vanishing components of extrinsic curvatureK±
ij

of Σ can be calculated and the result is

K+
T T =

[
ṙT̈ − Ṫ r̈− χ

2
dχ

dr
Ṫ 3 +

3
2χ

dχ

dr
Ṫ ṙ2

]
Σ

, (29)

K+
θ θ =

[
χrṪ

]
Σ
, (30)

K−
t t = 0, (31)

K−
θ θ =

[
RR′

X

]
Σ

. (32)
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With the help of Eqs. (22) - (32) and (10)

M =M(r). (33)

which can be interpreted as the total energy entrapped
within the surface Σ [16]. Thus the junction conditions
demand that the 5D Schwarschild mass M is given by
Eq. (33).

IV. APPARENT HORIZON

The apparent horizon is formed when the boundary of
trapped three spheres are formed. The apparent horizon
is the solution of

gabR,aR,b = −Ṙ2 +
R′

2

X2
= 0. (34)

Upon using Eqs. (8) and (10), we have

ΛR4 − 6R2 + 6M = 0. (35)

For Λ = 0 we have the Schwarzschild horizon R = ±
√
M,

and for M = 0 we have the de Sitter horizon R =
±
√

6/Λ. For 2M < 3/Λ there are two horizons:

R2
1 = ±

√
3
Λ

+
√

36− 24ΛM
2Λ

,

R2
2 = ±

√
3
Λ
−
√

36− 24ΛM
2Λ

. (36)

For M = 0 we have generalized cosmological horizon
R1 = ±

√
6/Λ otherwise generalized black hole horizon

for Λ 6= 0. For 2M > 3/Λ there are no horizons. The
time at which apparent horizons are formed, from is

tAH = t0(r)−
√

3
2Λ

sinh−1

[√
ΛM

6

]
, (37)

In the limit Λ = 0 above equation reduces to,

tAH = t0 −
√
M
2

. (38)

From Eq. (37), we have

Rn

M
= cosh2 αn. (39)

It is evident from Eq. (36) that R1 ≥ R2, also from
Eq. (39) α1 ≥ α2 or t1 ≥ t2, which means that the cos-
mological horizon always precedes the black hole horizon.

V. NATURE OF SINGULARITIES

The easiest way to detect a singularity in a space-time
is to observe the divergence of some invariants of the Rie-
mann tensor. The Kretschmann scalar (K = RabcdR

abcd,

Rabcd the Riemann tensor) for the metric (1) reduces to

K = 7
F ′

2

R6R′2
− 36

FF ′

R7R′
+ 72

F 2

R8
+

2
3

ΛF ′

R′R3
+

10
9

Λ2 (40)

and the Weyl scalar (C = CabcdC
abcd, Cabcd the Weyl

tensor) takes the form:

C =
9
2

F ′
2

R6R′2
− 36

FF ′

R7R′
+ 72

F 2

R8
(41)

The Kretschmann scalar, Weyl scalar and energy den-
sity diverge at t = t0(r) indicating the presence of a scalar
polynomial curvature singularity [17]. It has been shown
[18] that Shell-crossing singularities are characterized by
R′ = 0 and R > 0. On the other hand the singularity at
R = 0 is where all matter shells collapses to a zero physi-
cal radius and hence known as shell focussing singularity.
We shall consider the case t ≥ t0. In the context of the
Tolman-Bondi models the shell crossings are defined to
be surfaces on which R′ = 0 (R > 0) and where the den-
sity ζ diverges. A regular extremum in R along constant
time slices may occur without causing a shell crossing,
provided ζ(t, r) does not diverge. Where

ζ(t, r) =
3M′

2R3R′
. (42)

By Eq. (42), this implies M′ = 0 where ever R′ = 0 and
also that the surface R′ = 0 remain at fixed R. Now
Eq. (15) implies t′0 = 0. Thus the condition for a regular
maximum in R(t, r) is that M′ = 0, t′0 = 0 hold at the
same R.

Christodoulou [19] pointed out in the 4D case that the
non-central singularities are not naked. Hence, we shall
confine our discussion to the central shell focusing sin-
gularity. It is known that, depending upon the inhomo-
geneity factor, the 4D Tolman-Bondi solutions admits a
central shell focusing naked singularity in the sense that
outgoing geodesics emanate from the singularity. Here
we wish to investigate the similar situation in our 5D
space-time. In what follows, we shall confine ourselves to
the marginally bound case (W (r) = 1). We consider a
class of models such that

M(r) = γr2, (43a)
t0(r) = Br. (43b)

This class of models for 4D space-time is discussed in [8,
20, 21]. The parameter B gives the inhomogeneity of the
collapse. For B = 0 all shells collapse at the same time.
For higher B the outer shells collapse much later than the
central shell. We are interested in the causal structure
of the space-time when the central shell collapses to the
center (R = 0). The energy density at the singularity

ζ =
3γ
r2

(44)

and the equation of general density becomes
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ζ =
Λ

sinh2
[√

2Λ
3 (B − y) r

] [
1 +

√
2Λ
3 rB coth

[√
2Λ
3 (B − y) r

]
b
] . (45)

As t → t0(r) i.e. in approach to singularity, we have
sinhα ≈ α and cothα ≈ 1/α then Eq. (45) reduces to

ζ =
3y2

2(B − y)(2B − y)t2
=
c(y)
t2

. (46)

The nature (a naked singularity or a black hole) of the
singularity can be characterized by the existence of radial
null geodesics emerging from the singularity. The singu-
larity is at least locally naked if there exist such geodesics,
and if no such geodesics exist, it is a black hole. The
critical direction is the Cauchy horizon. This is the first
outgoing null geodesic emanating from r = t = 0. The
Cauchy horizon of the space-time has y = t/r = const
[20–22]. The equation for outgoing null geodesics is

dt

dr
= R′ (47)

Hence along the Cauchy horizon, we have

R′ = y (48)

and using Eqs. (48) and (15), with our choice of the scale,
we obtain the following algebraic equation:

y2
(
1− y

B

)
= 2B

√
γ

[
1− 1

2
y

B

]2
. (49)

To facilitate comparison with work in [13, 15], we intro-
duce a relation between B and γ as,

B =
1

2
√
γ
, (50)

then Eq. (49) can be written as

y2
(
1− y

B

)
=
[
1− 1

2
y

B

]2
. (51)

This algebraic equation governs the behavior of the tan-
gent vector near the singular point. The central shell
focusing singularity is at least locally naked, if Eq. (51)
admits one or more positive real roots. Hence in the ab-
sence of positive real roots, the collapse will always lead
to a black hole. Thus, the occurrence of positive real
roots implies that the strong CCC is violated, though
not necessarily the weak CCC. If Eq. (49) has only one
positive root, a single radial null geodesic would escape
from the singularity, which amounts to a single wave front
being emitted from the singularity and hence singular-
ity would appear to be naked only, for an instant, to
an asymptotic observer. A naked singularity forming in

gravitational collapse could be physically significant if it
is visible for a finite period of time, to an asymptotic ob-
server, i.e., a family of geodesics must escape from the
singularity. This happens only when Eq. (49) admits at
least two positive real roots [23].

It can be shown that Eq. (51) has two positive roots
if B > Bc = 1.6651. This is slightly higher than the
analogous value, B4

c = 1.56736, in 5D. The corresponding
Cauchy horizon evolves as y = 0.78611. Thus in 5D one
needs higher inhomogeneity to produce naked singularity.
For B > Bc, two solutions exist, the largest y gives the
Cauchy horizon. Other solution is termed as self-similar
horizon [20]. The results obtained here agree with the
earlier work [22, 23]. Since these analysis were done in
Minkowskian background or asymptotic flat setting (Λ =
0). As a result, one can claim that the Tolman-Bondi-
de Sitter space-time has same singularity behavior as the
Tolman-Bondi space-time.

The very fact the Eq. (51) is the same as that obtained
in [13, 15] when the metric is asymptotically flat, i.e.,
when Λ = 0, implies that the values of roots for the
geodetic tangent and the condition for these values to be
real and positive are the same as those obtained for the
asymptotically flat situation in [13, 15]. As a result, the
5D Tolman-Bondi-de Sitter space-time has same singu-
larity behavior as the 5D Tolman-Bondi space-time. Fur-
ther, it is interesting to note that, as t → t0(r), i.e., in
approach singularity, we have sinhα ≈ α and coth ≈ 1/α
and, then Eq. (15) reduces to Eq. (19). Thus the 5D
Tolman-Bondi-de Sitter solutions approach the Tolman-
Bondi solutions as t→ t0(r). These results are consistent
with in the analogous 4D dust collapse [24] and radiation
collapse [25].

As a result, the Tolman-Bondi-de Sitter space-time has
same singularity behavior as the Tolman-Bondi space-
time in both 4D and HD. Thus the final fate of collapsing
inhomogeneous dust in de Sitter background is similar to
that of collapsing inhomogeneous dust in Minkowskian
background, as it should have been expected, since when
t → t0(r) (R → 0) the cosmological term ΛR2/6 is neg-
ligible. Thus we can assert that the asymptotic flatness
is not a necessary ingredient for the formation of naked
singularity for at least for a class of models considered.

It is known that the Tolman-Bondi metric (Λ = 0) in
the 4D case is extensively used for studying the formation
of naked singularities in spherical gravitational collapse.
It has been found that Tolman-Bondi metric admit both
naked singularities and black holes form depending upon
the choice of initial data. Indeed, both analytical [18,
20, 22, 23] and numerical results [26] in dust indicate the
critical behavior governing the formation of black holes
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or naked singularities. One can now safely assert that
end state of 4D Tolman-Bondi collapse is now completely
known in dependence of choice of initial data. A similar
situation also occurs in 5D Tolman-Bondi collapse [13,
15]. Hence, we can conclude both naked singularities and
black holes can form in the 5D spherical inhomogeneous
dust collapse with a positive Λ.

VI. DISCUSSION

In the study of the Einstein equations in the 4D space-
time several powerful mathematical tools were developed,
based on the space-time symmetry, algebraical structure
of space-time, internal symmetry and solution generation
technique, global analysis, and so on. It would be inter-
esting how to develop some of these methods to higher
dimensional space-time. With this as motivation, plus
the fact that exact solutions are always desirable and
valuable, we have derived the exact spherically symmet-
ric solution of inhomogeneous dust collapse in the pres-
ence of the cosmological constant in the five dimensional
space-time. Although at first sight obtaining such a so-
lution appears to be pure mathematical interest, further
thought suggest opposite. We found general exact solu-
tions, for both marginally bound (W (r) = 1) and non-
marginally bound (W 6= 1), that describes gravitational
collapse of spherically symmetric inhomogeneous dust in
a 5D space-time. This is unlike the 4D case, where the
corresponding solutions for non-marginally bound case,
is available in parametric form only.

A gravitational collapse inevitably results in a space-
time singularity, once the collapse has gone beyond a
certain point, according to general relativity theory. The
phrase cosmic censorship refers to two closely related con-

jectures about the nature of these space-time singulari-
ties, due to Roger Penrose [11]. The weak CCC states
in essence says that gravitational collapse from regular
initial conditions never creates a space-time singularity
visible to distant observers. The idea here is that any sin-
gularity that forms must be hidden within a black hole.
The strong CCC holds that any such singularity is never
visible to any observer at all, even someone close to it. A
naked space-time singularity would therefore be one that
contradicts these conjectures.

The introduction of a cosmological constant changes
this scenario in many ways. There are more apparent
horizons instead of one. However, only two apparent
horizon are physical, namely the black hole horizon and
the cosmological horizon. Other results derived in [7] do
carry over to HD space-time essentially with same phys-
ical behavior.

Our investigation establishes that the space-time is
asymptotically flat or not does not make any difference
to the occurrence of a naked singularity. This evident at
least the in the class of models given by Eq. (43). Thus,
the 5D Tolman-Bondi de Sitter metric admits both naked
and covered singularities depending upon the choice of
initial data and hence contradicts the weak cosmic cen-
sorship conjecture.

Finally, the result obtained would also be relevant in
the context of superstring theory which is often said to
be next ”theory of everything”, and for an interpretation
of how critical behavior depends on the dimensionality
of the space-time.
Acknowledgment: The authors would like to thank IU-
CAA, Pune for kind hospitality while part of this work
was being done. One of the author(SGG) would like to
thank Director, BITS Pilani, Dubai for continuous en-
couragements.

[1] E. P. Hubble, Proc. Nat. Acad. Sci. U.S.A. 15, 168,
(1929).

[2] A. G. Reiss, et al. Astron. J. 116, 1009 (1998).
[3] S. Perlmutter, et al. Nature 391, 51 (1998); Ap. J. 517,

565 (1999).
[4] V. Sahani and A. Starobinsky, Int. J. Mod. Phys. D 9,

373 (2000).
[5] D. Markovic and S. L. Shapiro, Phys. Rev. D 61, 084029

(2000).
[6] Lisa Dyson, Matthew Kleban and Leonard Susskind,

JHEP 0210, 011 (2002).
[7] M. Cissoko, J. C. Fabris, J. Gariel, G. L. Denmat and N.

O. Santos, Preprint gr-qc/9809057.
[8] K. Lake, Phys. Rev. D 62, 027301 (2000).
[9] S. S. Deshingkar, S. Jhingan, A. Chamorro and P.

S. Joshi, Phys. Rev. D 63, 124005 (2001).
[10] J.J. Schwarz, Nucl. Phys. B226, 269 (1983).
[11] R. Penrose, Riv. Nuovo Cimento 1, 252 (1969); in Gen-

eral Relativity - an Einstein Centenary Volume, edited
by S. W. Hawking and W. Israel (Cambridge University
Press, Cambridge, England, 1979) pp 581-638.

[12] R. C. Tolman, Proc. Natl. Acad. Sci. USA. 20, 169
(1934); H. Bondi, Mon. Not. R. Astron. Soc. 107, 410
(1948).

[13] S. G. Ghosh and A. Banerjee, Int. J. Mod. Phys. D 12,
639 (2003).

[14] A. Banerjee, A. Sil and S. Chatterjee, Astrophys. J.
422, 681 (1994); A. Sil and S. Chatterjee, Gen. Relativ.
Gravit. 26, 999 (1994).

[15] S. G. Ghosh and A. Beesham, Phys. Rev. D 64, 124005
(2001).

[16] M. E. Cahill and G. C. McVittie, J. Math. Phys. 11,
1382 (1970).

[17] S. W. Hawking and G. F. R. Ellis, The large scale struc-
ture of space-time Cambridge University Press, Cam-
bridge,1973.

[18] R. P. A. C. Newman, Classical Quantum Gravity 3, 527
(1986).

[19] D. Christodoulou, Commun. Math. Phys. 93, 171 (1984).
[20] J. P. S. Lemos, Phys. Lett. A 158, 271 (1991); ibid. Phys.

Rev. Lett. 68, 1447 (1992).
[21] A. Ori and T. Piran, Phys. Rev. D 42,1068 (1990).



7

[22] B. Waugh and K. Lake, Phys. Rev. D 38, 1315 (1988).
[23] I. H. Dwivedi and P. S. Joshi, Classical Quantum Gravity

9, L69 (1992); P. S. Joshi and T. P. Singh, Gen. Rela-
tiv. Gravit. 27, 921 (1995); ibid. Phys. Rev. D 51, 6778
(1995).

[24] S. G. Ghosh Int. J. Mod. Phys. D 14, 707 (2005).
[25] S. M. Wagh and S. D. Maharaj, Gen. Relativ. Gravit.

31, 975 (1999).
[26] D. M. Eardley and L. Smarr, Phys. Rev. D 19, 2239

(1979); D. M. Eardley, in Gravitation in Astrophysics,
edited by B. Carter and J. B. Hartle (NATO Advanced
Study Institute, Series B: Physics, Vol. 156) (Plenum
Press, New York, 1986), pp. 229-235.


